Logarithmic del Pezzo surfaces with rational double and triple singular points

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rational Points on Certain Del Pezzo Surfaces of Degree One

Let f(z) = z +az + bz + cz+ d ∈ Z[z] and let us consider a del Pezzo surface of degree one given by the equation Ef : x 2 − y − f(z) = 0. In this note we prove that if the set of rational points on the curve Ea, b : Y 2 = X + 135(2a − 15)X − 1350(5a + 2b − 26) is infinite, then the set of rational points on the surface Ef is dense in the Zariski topology.

متن کامل

Arithmetic on Singular Del Pezzo Surfaces

The study of singular cubic surfaces is quite an old subject, since their classification (over C) goes back to Schlafli [39] and Cay ley [8]. However, a recent account by Bruce and Wall [6] has shown that modern singularity theory can give much insight into this classification. One of the main themes of the present paper is that this approach is also useful over an arbitrary perfect field k for...

متن کامل

Counting Rational Points on Del Pezzo Surfaces with a Conic Bundle Structure

For any number field k, upper bounds are established for the number of k-rational points of bounded height on non-singular del Pezzo surfaces defined over k, which are equipped with suitable conic bundle structures over k.

متن کامل

INHOMOGENEOUS CUBIC CONGRUENCES AND RATIONAL POINTS ON DEL PEZZO SURFACES by

— For given non-zero integers a, b, q we investigate the density of solutions (x, y) ∈ Z to the binary cubic congruence ax + by ≡ 0 mod q, and use it to establish the Manin conjecture for a singular del Pezzo surface of degree 2 defined over Q.

متن کامل

Nonnormal Del Pezzo Surfaces

0.1 Throughout this paper, a del Pezzo surface is by definition a connected, 2-dimensional, projective k-scheme X,OX(1) that is Gorenstein and anticanonically polarised; in other words, X is Cohen–Macaulay, and the dualising sheaf is invertible and antiample: ωX ∼= OX(−1). For example, X = X3 ⊂ P 3 an arbitrary hypersurface of degree 3. Under extra conditions, del Pezzo surfaces are interesting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 1989

ISSN: 0040-8735

DOI: 10.2748/tmj/1178227771